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We describe an independent trajectory implementation of semiclassical Liouville method for simulating quantum
processes using classical trajectories. In this approach, a single ensemble of trajectories describes all
semiclassical density matrix elements of a coupled electronic state problem, with the ensemble evolving
classically under a single reference Hamiltonian chosen on the basis of physical grounds. In this paper, we
introduce an additional uncoupled trajectory approximation, allowing the members of the ensemble to evolve
independently of one another and eliminating the major computational costs of our previous coupled trajectory
implementation. The accuracy of the method is demonstrated for model one-dimensional problems. In addition,
the approach is applied to the chemical reaction dynamics of a collinear triatomic system, yielding excellent
agreement with exact calculations. This method allows molecular dynamics involving coupled electronic
surfaces to be modeled with essentially the same effort as classical molecular dynamics and ensemble averaging.

I. Introduction

In this paper, we describe a method for simulating the
dynamics of molecular systems with coupled electronic states
based on a semiclassical limit of the coupled state Liouville
equation.1-7 Our previous work has demonstrated that accurate
results can be obtained in principle for model one-dimensional
systems using the semiclassical Liouville method. Here, we
introduce additional approximations that allows the method to
be applied tomultidimensionalproblems with an effort com-
parable with purely classical molecular dynamics and ensemble
averaging.

In the semiclassical Liouville method, the leading quantum
electronic coherence effects are incorporated by extending the
conventional classical description of nonadiabatic transitions in
terms of trajectories to include an explicit semiclassical
ensemble-basedtreatmentoftheoff-diagonalelectroniccoherence.1-7

Similar approaches have been pursued by Kapral, Ciccotti, and
co-workers,8-11 Schofield and co-workers,12-14 Ando and co-
workers,15,16 Stock and co-workers,17 and others.

In our previous publications, we describe the nonadiabatic
semiclassical Liouville formalism and present numerical imple-
mentations of the general approach in the context of a modified
classical molecular dynamics simulation in both diabatic1,2,4,5

and adiabatic3 representations. In addition, we apply the method
to the simulation of quantum electronic coherence and the
process of environmental decoherence.4,6,18 The method has
proven to be quite accurate for the model problems considered
so far, providing not only nearly quantitative agreement between
the observable electronic population transfer but also a faithful
representation of the evolving states of the system, including
the intrinsically quantum mechanical coherence terms.

A full numerical implementation of the semiclassical Liouville
methodfornonadiabaticdynamicsiscomputationallyintensive,1-4,18

and care must be taken in the selection and propagation of the
trajectory ensembles. These complications are due to the use

of multiple ensembles, each representing an element of the
semiclassical density matrixFij. Each trajectory ensemble
evolves under its own Hamiltonian in the multiple ensemble
implementation, and thus the relative positions of the trajectories
must be carefully followed. Often, the ensembles diverge from
each other under their intrinsic dynamics, leading to numerical
problems and requiring birth, death, or retirement of the
trajectories. Although our previous work demonstrated that a
full implementation of the method can give quantitatively
accurate results in principle, simplification of the numerical
algorithm is needed to apply the approach in practice to realistic
multidimensional problems.

The numerical effort can be reduced in some applications by
reformulating the general semiclassical Liouville method in
terms of a single trajectory ensemble.7 Here,oneensemble of
trajectories supports the evolution ofall of the generalized phase
space distributionsFij(q, p, t). A single reference Hamiltonian
is chosen on the basis of physical grounds; for electronic
relaxation of an initially excited state, the upper surface
HamiltonianH11 is the natural choice, for instance. Classical
trajectories evolving on this surface then represent the dynamics
of the population of the upper stateF11(q, p, t) and alsothe
electronic coherenceF12(q, p, t) and ground state population
F22(q, p, t). The error made in the classical motion of the
trajectories for these latter distributions is compensated
for by incorporating the difference between the correct and
reference Liouville propagators into the calculation of the
coefficients of the individual trajectories. As illustrated in ref
7, this approach can give nearly exact results for a number of
model problems and cases describing ultrafast electronic
relaxation dynamics. Although the single ensemble method is
much simpler to implement than the full multiple ensemble
approach, the interaction of trajectories within the ensemble
leads to numerical challenges in multidimensional systems,
where the large number of trajectories required to sample the
evolving densities combined with the linear algebra problem
associated with trajectory interactions leads to high computa-
tional expense.
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In this paper, we describe the extension of the semiclassical
Liouville method to problems in multiple dimensions. We
introduce anindependent trajectory approximation, where the
computationally expensive terms in the equations of motion that
capture the nonlocality of nuclear quantum dynamics are
neglected. The resulting method, although quantum mechanical
in nature, resembles conventional classical molecular dynamics
and ensemble averaging in practical implementation. As we
describe below, this approximation is often (although not
always) a good one, leading to an efficient and easily imple-
mented method for modeling molecular dynamics on multiple
electronic states in many dimensions.

The organization of the rest of this paper is as follows: In
section II, we briefly review the semiclassical Liouville approach
to molecular dynamics on multiple electronic states. We
summarize the multiple ensemble methodology employed in our
previous work and describe the current single ensemble-
independent trajectory formulation. In section III, we apply the
method to model single and multidimensional problems and
compare the results with exact quantum wave packet calcula-
tions. Finally, a summary is given in section IV.

II. Method

We consider the problem of nonadiabatic molecular dynamics
on two coupled electronic surfaces. The time-dependent wave
function describing the coupled electronic-nuclear dynamics of
a two electronic statef nuclear degree of freedom system is
given by

and the Hamiltonian is a 2× 2 matrix of operators:

whereq ) (q1, q2, ..., qf). The diagonal elementsĤjj consist of
the kinetic plus single surface potential energy operators,

for i ) 1, 2. We take the off-diagonal elementV(q) to be a real
function of the coordinatesq; this corresponds to a diabatic
representation of the electronic problem.19

Our semiclassical approach to nonadiabatic molecular dyna-
mics is based on the quantum Liouville equation for the density
operatorF̂(t).20,21 The Liouville representation allows a direct
analogy to be made between classical and quantum mechanics
and permits a description of manifestly quantum mechanical
quantities and processes in terms of classical functions in phase
space and their approximations by trajectory ensembles.

The state of the system is described by the density operator
F̂(t), which obeys the quantum Liouville equation20,21

For the two state problem considered here, the density operator
is itself a 2× 2 matrix,

Written out explicitly in terms of components ofF̂, eq 4
becomes

whereĤ12 ) Ĥ21 ) V.
The classical limit of the multistate quantum Liouville

equation of motion can be found by applying the Wigner-
Moyal formalism,22-25 which gives a classical phase space
representation of the algebra of quantum operators in terms of
a power series expansion inp. To lowest order, the product of
two operatorsÂ and B̂ becomes

where A(q, p) and B(q, p) are the corresponding functions
defined on phase space (q, p) and

is the Poisson bracket.26 A systematic power series inp can be
defined rigorously for general operators depending onq̂n and
p̂n using the Wigner-Moyal formalism. This classical limit results
in a set of coupled partial differential equations for the
semiclassical phase space functions corresponding to the matrix
elements ofF̂. These are1-4,18

whereL µ̂ f ) {Hµ, f} defines the classical Liouville operator
L µ̂ in terms of the Poisson bracket with the corresponding
Hamiltonian. The average HamiltonianH0 ) (H11 + H22)/2
appears in the equation of motion for the electronic coherence
F12(q, p, t). In addition, an imaginary phase factor-iω
contributes a nonclassical component to the evolution ofF12,
where ω ) (H11 - H22)/p is the difference potential di-
vided by p. The equation of motion forF21 can be obtained
from eq 10 by complex conjugation. For nonzero electronic
couplingV, sink and source terms appear in the equations that
couple the evolving generalized phase space distributions to
each other.

In the full numerical method, the functionsF11, F22, andF12

are each represented by distinct ensembles of trajectories. Each
trajectory is weighted by a time-dependent coefficient; for the
coherence, these coefficients are, in general, complex numbers.
In particular,

whereΓ ) (q, p). Here,N is the number of trajectories in the
ensemble (taken here to be the same for eachµ), where
µ ) 11, 22, 12. The trajectory ensembles are smoothed by a

Ψ(q, t) ) (ψ1(q, t)
ψ2(q, t) ) (1)

Ĥ ) (Ĥ11 V
V Ĥ22

) (2)

Ĥjj ) ∑
n)1

f p̂n
2

2mn

+ Uj(q) (3)

ip
dF̂(t)

dt
) [Ĥ, F̂(t)] (4)

F̂(t) ) (F̂11(t) F̂12(t)
F̂21(t) F̂22(t) ) (5)

ip
dF̂ij

dt
) ∑

k)1

2

Ĥik F̂kj - F̂ik Ĥkj (6)

ÂB̂ ) AB + ip{A, B} + O(p2) (7)

{A, B} ) ∑
n (∂A

∂q
n

∂B

∂pn

-
∂B

∂qn

∂A

∂pn)

∂F11

∂t
) L 1̂1F11 + {V, ReF12} - 2V

p
Im F12 (8)

∂F22

∂t
) L 2̂2F22 + {V, ReF12} + 2V

p
Im F12 (9)

∂F12

∂t
)

(L 0̂ - iω)F12 + 1
2

{V, F12 + F22} + iV
p

(F11 - F22) (10)

Fµ(Γ, t) )
1

N
∑
j)1

N

aj
(µ)(t) φ(Γ - Γj

(µ)(t)) (11)
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Gaussian functionφ(Γ):

where

The widthsσq,n andσp,n are determined by numerical consid-
erations. To use eq 11 as the basis for propagation of the coupled
phase space functions, equations of motion for the coefficients
aj

(µ)(t) are needed. These are then combined with conventional
Hamiltonian dynamics for the phase space variablesΓj

(µ)(t) ) (
qj

(µ), pj
(µ)). In the full multiple ensemble implementation, each

ensemble evolves under its own HamiltonianHµ.
We derive equations of motion for the trajectories and their

coefficients by considering the short time limit of the integrated
form of the inhomogeneous coupled linear partial differential
equations given in eqs 8-10. As shown in our previous work,1-5

the result is a set of linear algebraic equations relating the time
t and t + ∆t coefficients:

(We employ the notationµ ) 12 ≡ 0 in these expressions for
simplicity.) The overlap and derivative matricesS(µν) andD(µν)

are defined at timet as follows:

These matrix elements can be evaluated analytically.1-5 The
diagonal matrices in eqs 14-16 are given by

During each time step, the coupled set of linear equations, eqs
14-16, are first solved for the updated coefficients and then

the trajectoriesΓj
(µ)(t) are integrated forward tot + ∆t using

Hamilton’s equations.
The numerical method described above can give accurate

results for model problems of molecular dynamics with elec-
tronic transitions.2-5 The approach can describe both electronic
relaxation processes and coherent wave packet interferometry
with a nearly quantitative level of accuracy. In practice, however,
the method requires care to apply to a given problem and is
difficult to incorporate into a general “black box” approach that
can be employed without significant preliminary study of the
problem and its dynamics.

The origin of these complications is the use of multiple trajec-
tory ensembles to support the elements ofF. Each set of trajec-
tories Γj

(µ)(t) must be followed in phase space. This is not a
difficulty for the trajectory propagation itself, but it creates
significant technical problems for the equations of motion de-
scribing the coefficientsaj

(µ)(t). In particular, the structure of
the matricesS(µ) andD(µ) as a function of the trajectory indices
i andj become complicated and unpredictable. Significant book-
keeping is thus required if approximations to the matrix structure
are to be made to simplify and accelerate the linear algebraic
computations. More seriously, divergence of the ensembles rela-
tive to one another in phase space can create situations where,
e.g., theµth ensemble fails to provide an adequate representa-
tion of Fµ where the inhomogeneous term depending onFν * µ
is important becauseΓj

(µ)(t) and Γj
(ν)(t) no longer overlap in

configuration and momentum space. Without significant effort
being expended in generating new trajectories (and retiring irre-
levant ones), the linear algebra problem for the coefficient evo-
lution becomes ill-defined, resulting in numerical instabilities.

To circumvent the problem associated with a multiple
trajectory ensemble representation of the density matrix ele-
ments, we have reformulated the semiclassical Liouville method
in terms of asinglereference ensembleΓj

(ref)(t).7 In particular,
all three distribution functions are supported by a single
trajectory ensemble, evolving under a reference Hamiltonian
Href. For ultrafast relaxation of an initially excited electronic
state (defined here as state 1), the dominant dynamical process
is the evolution of the initial densityF11, and thus the natural
choice for the reference Hamiltonian isHref ) H11. The ensemble
of trajectories supports the dynamics ofF22 andF12, as well as
F11. Incorporating a single reference ensemble in eq 11 gives
the densities as

Propagating these different generalized distributions under the
same Hamiltonian introduces errors in the evolution. To
compensate for the error made in using the “wrong” trajectories
in eq 22, a correction factor is incorporated into equations of
motion for the coefficientsaj

(µ)(t). We write the propagators for
the electronic states, exp(t L µ̂), in terms of the reference
propagator exp(t L r̂ef). Theµth HamiltonianHµ is expressed in
terms of the reference HamiltoniansHref and a correction
Hamiltonian∆Hµ:

where∆Hµ ) Hµ - Href. Then, defining the Liouville operator
L ∆̂Hµ

≡ {∆Hµ, ‚} and invoking a short time approximation, we
have

φ(Γ - Γo) ) ∏
n)1

f

φn(Γn - Γn,o) (12)

φn(Γn - Γn,o) )

1
2πσq,nσp,n

exp[-
(qn - qn,o)

2

2σq,n
2

-
(pn - pn,o)

2

2σp,n
2 ] (13)

a(11)(t + ∆t) ) a(11)(t) +

∆t[[S(11)]-1D(10)V′(0) Rea(12)(t) - 2
p
[S(11)]-1S(10)V(0) Im a(12)(t)]

(14)

a(22)(t + ∆t) ) a(22)(t) +

∆t[[S(22)]-1D(20)V′(0) Rea(12)(t) + 2
p
[S(22)]-1S(20)V(0) Im a(12)(t)]

(15)

a(12)(t + ∆t) ) Φ(0)a(12)(t) +

∆t[12[S(00)]-1D(01)V′(1) + 1
p
[S(00)]-1S(01)V(1)]Φ(1)a(11)(t) +

∆t[12[S(00)]-1D(02)V′(2) - 1
p
[S(00)]-1S(02)V(2)]Φ(2)a(22)(t) (16)

Sij
(µν) ) ∫∫φ(Γ - Γi

(µ))φ(Γ - Γj
(ν)) d2fΓ (17)

[Dij
(µν)]k ) ∫∫φ(Γ - Γi

(µ))
∂

∂pk
φ(Γ - Γj

(ν)) d2fΓ (18)

V ij
(µ) ) V(Γi

(µ))δij (19)

[V′ij
(µ)]k )

∂V(Γi
(µ))

∂qk
δij (20)

Φij
(µ) ) e-iω(Γi

(µ))∆tδij (21)

Fµ(Γ, t) )
1

N
∑
j)1

N

aj
(µ)(t)φ(Γ - Γj

(ref)(t)) (22)

Hµ ) Href + ∆Hµ (23)

e∆t L µ̂ = e∆t L r̂efe∆t L ∆̂Hµ = e∆t L r̂ef(1 + ∆tL ∆̂Hµ
) (24)
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The expressions for the short-time propagatedFµ then become

A modified set of linear algebraic equations is obtained:7

The overlap, derivative, potential, potential derivative, and phase
matrices now no longer are given superscripts indicating the
ensemble, as for all casesµ ) ν ≡ ref.

As shown in ref 7, results obtained using the single ensemble
Liouville formulation can be in close agreement with exact
quantum results for model one-dimensional systems. Complica-
tions remain, however, for multidimensional problems: The
number of trajectories required to represent the evolving
densities accurately scale exponentially with the number of
degrees of freedomf. Straightforward methods for solving the
linear algebra problem associated with the interactions between
trajectories quickly becomes computationally unfeasible, and
additional approximations are required.

The main numerical complication of the interacting trajectory-
based method is the linear algebra associated with the overlap
matrixS. For the localized smoothing functionsφ(Γ), this matrix
is nonzero mainly along the diagonal. The other relevant object
for coupling of trajectories is the derivative matrixD, which
has zeros on the diagonal. These two characteristics suggest
introducing the followingindependent trajectoryapproximation:

With this approximation, the equations of motion for the
coefficients simplify to

Because now there are no cross terms, we can drop the matrix
notation and write the iteration algorithm for the weights of

each individual trajectory as

wherei ) 1, 2, ...,N, andΓi is the phase space point of trajectory
i at time t. This approximation forms the foundation of the
method presented in this paper. It will be seen that for the
problems for which this approximation works, the results show
very good agreement when compared against exact calculations.
Moreover, this formulation provides a significant advantage over
coupled trajectory implementations of the semiclassical Liouville
formulation of quantum dynamics: The computational cost
required in the implementation of eqs 35, 36, and 37 is
comparable to conventional classical molecular dynamics and
ensemble averaging.

In the next section the independent trajectory approach will
be tested on the model problems considered in our previous
work to compare its accuracy and asses its limitations. The
method is then extended to the reaction dynamics in a two-
dimensional model of collinear reaction dynamics.

III. Numerical Tests of Method

A. Coupled Bound-Repulsive System.As a first test of
the accuracy of the single ensemble independent trajectory
approach, we apply the method to a model of coupled bound
and repulsive motion on a pair of one-dimensional potentials.
This system was treated in our previous publications using the
full multiple ensemble method2-4,18 and the single ensemble
implemention.7 Nearly quantitative agreement with quantum
wave packet results was obtained in both of these previous
studies.

The system represents the coupled electronic-nuclear dynam-
ics of a diatomic molecule with (reduced) massm ) 10 000 au
prepared initially as a minimum uncertainty wave packet on
the upper (repulsive) surface. The initially populated state is
represented by an exponential function,

which is coupled by off-diagonal terms in the diabatic two-
state Hamiltonian to a bound Morse potential, given by

These curves exhibit a single crossing in the dynamically
relevant region, atq ) qc. The off-diagonal coupling term is
represented by a Gaussian centered at the crossing point,

Numerical values of the parameters for this system are given
in Table 1.

The initially populated repulsive state is employed to define
the reference HamiltonianHref, and so trajectories are propagated
on the U1(q) potential. An initial ensemble ofN ) 169
trajectories is generated in phase space by sampling the two-
dimensional Gaussian Wigner distribution of the initial mini-

F11(Γ, t + ∆t) ) e∆t L r̂ef[F11(Γ, t) + (b11(Γ, t) +

L ∆̂H11
F11(Γ, t))∆t + O(∆t2)] (25)

F22(Γ, t + ∆t) ) e∆t Lref[F22(Γ, t) + (b22(Γ, t) +

L∆H22
F22(Γ, t))∆t + O(∆t2)] (26)

F12(Γ, t + ∆t) ) e∆t L r̂efe-iω(Γ)∆t[F12(Γ, t) + (b12(Γ, t) +

L ∆̂H0
F12(Γ, t))∆t + O(∆t2)] (27)

a(11)(t + ∆t) ) (1 + ∆tS-1D∆′1)a
(11)(t) +

∆t [S-1DV′ Rea(12)(t) - 2
p
V Im a(12)(t)] (28)

a(12)(t + ∆t) ) (1 + ∆tS-1D∆′2)a
(22)(t) +

∆t [S-1DV′ Rea(12)(t) + 2
p
V Im a(12)(t)] (29)

a(12)(t + ∆t) ) (1 + ∆tS-1D∆′12)Φa(12)(t) +
1
2
∆tS-1DV′Φ[a(11)(t) + a(22)(t)] + i

p
∆tVΦ[a(11)(t) - a(22)(t)]

(30)

S-1D ) 0 (31)

a(11)(t + ∆t) ) a(11)(t) - 2∆t
p

V Im a(12)(t) (32)

a(22)(t + ∆t) ) a(22)(t) + 2∆t
p

V Im a(12)(t) (33)

a(12)(t + ∆t) ) Φa(12)(t) + i∆t
p

VΦ[a(11)(t) - a(22)(t)]
(34)

ai
(11)(t + ∆t) ) ai

(11)(t) - 2∆t
p

V(Γi) Im ai
(12)(t) (35)

ai
(22)(t + ∆t) ) ai

(22)(t) + 2∆t
p

V(Γi) Im ai
(12)(t) (36)

ai
(12)(t + ∆t) )

eiω(Γi)∆t(ai
(12)(t) + i∆t

p
V(Γi)[ai

(11)(t) - ai
(22)(t)]) (37)

U1(q) ) Ae-R(q - q1) - B (38)

U2(q) ) D(e-2â(q-q2) - 2e-â(q-q2)) (39)

V(q) ) V0e
-c(q-qc)2

(40)
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mum uncertainty wave packet localized at (qo, po ) 0) on the
upper surface. This initial wave packet is parametrized by the
harmonic frequencyω given in Table 1, giving widths∆q )
xp/2mω and ∆p ) xmωp/2, so that ∆q∆p ) p/2. The
repulsive wall of the potential accelerates the quantum state (and
the trajectories in its ensemble representation) in the direction
of increasingq, leading to electronic population transfer near
the crossing pointq ) qc.

The width parameters characterizing the smoothing function
φ(q, p) are obtained from the initial wave packet widths by the
scalingσq ) 2∆q/N andσp ) 2∆p/N. These values are found to
yield numerically stable and accurate results in practice. The
exact quantum results were obtained by the method of Kosloff.27

As shown in Figure 1, the independent trajectory results are
very close to the coupled single trajectory results of ref 7. For
small initial displacementsqo, the initial wave packet has a
relatively high kinetic energy at the crossing point. For such
conditions, the semiclassical results agree very well with exact
quantum calculations. Only when the initial wave packet is
situated near the crossing point initially do the results disagree.
These results indicate that the independent trajectory approxima-
tion does not introduce errors beyond those of the semiclassical
method and its single ensemble formulation for this system.

B. Tully’s Single Crossing Model.As a further test of the
independent ensemble method, we consider a model proposed
by Tully.28 This model, which consists of two potentials with a
single crossing, has become a benchmark problem for nona-
diabatic dynamical simulation methods. We define the two
diabatic surfaces to be

and

The off-diagonal coupling is given by

These potentials exhibit a crossing atq ) 0. Surface 1 defines
Href. The numerical parameters employed areA ) 0.01, B )
1.6, C ) 0.005, andD ) 1.0. The mass ism ) 2000 au. We
compute the final energy-dependent electronic transition prob-
abilities P1 and P2, defined as the asymptotic populations of
states 1 and 2, respectively. We show the results in Figure 2
and consider a range of initial average energies, given byE )
p2k2/2m, wherek is the wave vector of the initial wave packet.
The initial coordinate value chosen isqo ) -6.0 au, well to
the left of the crossing point atq ) 0, and the mean momentum
is po ) pk. The position and momentum widths are chosen in
the same manner as for the bound-repulsive system described

above. The wave packet’s initial Wigner function is again
sampled withN ) 169 trajectories. The exact results are
obtained using by solving the time-dependent Schro¨dinger
equation using the method of Kosloff.27

The results presented in Figure 2 show nearly quantitative
agreement between the quantum and semiclassical Liouville
results. The independent trajectory method gives results that
are esentially indistinguishable from the interacting ensemble
approach.

C. Tully’s Dual Crossing Model. We also consider the dual
crossing model of Tully.28 This system exhibits two crossings,
which allows for interference effects in the final state popula-
tions due to crossing and recrossing between the surfaces. The
two potentials characterizing the dual crossing model are
given by

and

and the electronic coupling is taken to be

The numerical parameters areA ) 0.1,B ) 0.28,E0 ) 0.05,C
) 0.015,D ) 0.06, andm ) 2000 au, the same as considered
by Tully28 and in our previous work on the single ensemble
approach.7 The reference HamiltonianHref is defined by theU1-
(q) potential. The minimum uncertainty wave packet width is

TABLE 1: Numerical Values of Parameters for the
Bound-Repulsive System, in Atomic Units

A 2.2782× 10-2

B 2.2782× 10-2

R 2.0
q1 5.5
D 1.8225× 10-2

â 1.0
q2 5.8
c 4.0
qc 6.15315
m 1 × 104

ω 4 × 10-3

V0 1.2× 10-3

U1(q) ) {A[1 - exp(Bq)] q < 0
-A[1 - exp(-Bq)] q > 0

(41)

U2(q) ) -U1(q) (42)

V(q) ) C exp(-Dq2) (43)

Figure 1. Exact and semiclassical asymptotic population on the
repulsive surface as a function of the initial wave packet position for
the coupled bound-repulsive model. Shown are wave packet propaga-
tion calculations (black), coupled trajectory results (red diamonds), and
the calculations performed with the independent trajectory method (blue
dots).

Figure 2. Final population for the single crossing model. The
asymptotic population is studied for different initial momenta of the
wave packet. Shown are wave packet propagation calculations (black),
coupled trajectory results (red diamonds), and the calculations performed
with the independent trajectory method (blue dots).

U1(q) ) -A exp(-Bq2) + E0 (44)

U2(q) ) 0 (45)

V(q) ) C exp(-Dq2) (46)
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the same as for the calculations described above, and the mean
position and momentum areqo ) -8.0 au andpo ) pk, where
E ) p2k2/2m. The results are shown in Figure 3. Very good
agreement is observed at high energies. However, strong
deviations between the independent and coupled trajectory
methods are seen at lower energies, and here the agreement
between the independent trajectory results and exact quantum
calculations is worse than those for the coupled trajectory
approach. At the low energies, quantum effects are more
important, and the nonlocal interference between amplitudes on
the two electronic surfaces are not well-captured by the
approximations underlying the current method.

D. Multidimensional Models. We now extend the indepen-
dent trajectory formulation to the study a problem that has more
than one spatial dimension. The model is two-dimensional and
represents a collinear collision and reaction between an atom
and a diatomic molecule, of the form A+ BC f AB + C. We
treat a system employed by Ben-Nun and Martı´nez in the study
of their multiple spawning method for multidimensional nona-
diabatic problems,29 where values for the reaction probability
have been given for quantum calculations and for simulations
done with the multiple spawning method. In this two-
dimensional diabatic model, each of the two diabatic potentials
describes a collinear nonreactive collision between an atom and
a diatomic molecule. Chemical reaction corresponds to transition
between these two diabatic states. The interstate coupling has
been set to a constant throughout the simulation. The calcula-
tions are done in Jacobi coordinates,30 giving a diagonal kinetic
energy operator for each electronic state. The two potential
surfaces are given by

and

The Jacobi coordinater represents the distance between atoms
BC, andR is the distance from atom A to the center of mass of

BC. As mentioned above, the kinetic energy operator is diagonal
in this representation and is given by

and the intersurface coupling is

and the parametersMBC andMA,BC are the reduced masses for
the B-C and A-BC motions. The three atoms are taken to be
identical with a mass of lithium, so the expressions for the
reduced masses simplify to

The values of the different parameters used in the simulation
are summarized in Table 2, where all the quantities are in in
atomic units. A cut of the two-dimensional diabatic potential
landscape is shown in Figure 4. This cut was made atr ) re,
which is taken as the center of the initial wave packet along
ther coordinate, whereas the initial state center alongR is taken
at an asymptotic value withR ) 16 au. The initial population
is on surface 1; therefore, to get to the reactive region, some
initial kinetic energy has to be given to the wave packet at the
beginning of the simulation. The adiabatic representation of this
two-dimensional system has two potential wells on the ground
state, which describes a reactive atom exchange reaction of the
LEPS form,30 with an energy barrier separating the wells. The
adiabatic representation is obtained from the diagonalization of
the Hamiltonian for the system, and the barrier height is found
to beBh ) 0.43536 eV.29 Because this is the energy needed to
overcome the barrier in the adiabatic representation, it will be
the energetic reference in the measure of the initial kinetic
energy of the wave packet:

where the excess kinetic energy is calculated from the initial
relative kinetic energy of the atom with respect to the center of
mass of the diatomic molecule.

The semiclassical Liouville reaction probability is plotted
against the excess kinetic energy in Figure 5 and compared with
the results of exact quantum calculations.29 Our semiclassical
results show a very good correspondence with quantum calcula-
tions, with the best agreement at low and high energies.

IV. Summary

In this paper, we have presented an independent trajectory
implementation of semiclassical Liouville method for simulating
quantum processes using classical trajectories. The method is
based on employing one ensemble of trajectories to represent

Figure 3. Final population for the dual crossing model. In this figure
the asymptotic population is plotted against the logarithm of the initial
kinetic energy of the wave packet. Shown are wave packet propagation
results (black), coupled trajectory (red diamonds), and the calculations
performed with the independent trajectory method (blue dots).

TABLE 2: Parameters Used in the Collinear Nonreactive
Triatomic Reaction (All Values in Atomic Units)

De â re Drep Vc m

0.038647 0.458038 5.0494 0.02 0.00136 12652.7

U1(r, R) ) De(1 - exp(-â(r - re)))
2 +

Drep exp(-â(R - r/2 - re)) (47)

U2(r, R) ) De(1 - exp(-â(R - r/2 - re)))
2 +

Drep exp(-â(r - re)) (48)

Figure 4. Potential energy landscape for the triatomic reaction model.
The cut in the two-dimensional surface has been made atr ) re.

T )
pr

2

2MBC
+

pR
2

2MA,BC
(49)

V ) Vc (50)

MBC ) m/2 and MA,BC ) 2m/3 (51)

Tex ) T - Bh (52)
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all semiclassical density matrix elements of a coupled electronic
state problem. The ensemble evolves classically under a single
reference Hamiltonian, which is chosen on the basis of physical
grounds. In the present work, an additional uncoupled trajectory
approximation was introduced, allowing the members of the
ensemble to evolve independently of one another. This inde-
pendent trajectory approximation leads to great simplification
in the implementation, while giving results of accuracy com-
parable to the semiclassical method itself for many problems.
When the nonlocality of quantum dynamics becomes important,
however, the deficiencies of the “more classical” independent
ensemble approach become visible. The accuracy of the method
was assessed for several model one-dimensional problems. An
application to the chemical reaction dynamics of a collinear
triatomic system was then presented, yielding excellent agree-
ment with exact calculations. This method allows molecular
dynamics involving coupled electronic surfaces to be modeled
with essentially the same effort as classical molecular dynamics
and ensemble averaging.
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