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Independent Trajectory Implementation of the Semiclassical Liouville Method: Application
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We describe an independent trajectory implementation of semiclassical Liouville method for simulating quantum
processes using classical trajectories. In this approach, a single ensemble of trajectories describes all
semiclassical density matrix elements of a coupled electronic state problem, with the ensemble evolving
classically under a single reference Hamiltonian chosen on the basis of physical grounds. In this paper, we
introduce an additional uncoupled trajectory approximation, allowing the members of the ensemble to evolve
independently of one another and eliminating the major computational costs of our previous coupled trajectory
implementation. The accuracy of the method is demonstrated for model one-dimensional problems. In addition,
the approach is applied to the chemical reaction dynamics of a collinear triatomic system, yielding excellent
agreement with exact calculations. This method allows molecular dynamics involving coupled electronic
surfaces to be modeled with essentially the same effort as classical molecular dynamics and ensemble averaging.

I. Introduction of multiple ensembles, each representing an element of the
semiclassical density matriyj. Each trajectory ensemble

In this paper, we describe a method for simulating the . ol = :
. . . evolves under its own Hamiltonian in the multiple ensemble
dynamics of molecular systems with coupled electronic states . - - " ; .
based on a semiclassical limit of the coupled state Liouville implementation, and thus the relative positions of the trajectories

equationt~7 Our previous work has demonstrated that accurate must be carefully folIc_;vx_/ed_. O_ften, the gnsembl_es diverge fr_om
results can be obtained in principle for model one-dimensional each other under the.'r. Intrinsic dynamics, Iead!ng to numerical
systems using the semiclassical Liouville method. Here, we Fro.bletmfs ar'l&jm:equ;]nng b|rth,. death, kO:j ret|rer:1e:1tdo:htktle
introduce additional approximations that allows the method to rajectones. ough our previous work demonstrated that a
be applied tomultidimensionalproblems with an effort com- full |mplementat|(_)n Of the me_thod_ can give quant|tat|v_ely
parable with purely classical molecular dynamics and ensembleaccurate _results in principle, S|mpI|f|cat|o_n of th? numenc_:al_
averaging. algo_rlthm is needed to apply the approach in practice to realistic
In the semiclassical Liouville method, the leading quantum multldlmenspnal problems. . L
electronic coherence effects are incorporated by extending the 1€ numerical effort can be reduced in some applications by
conventional classical description of nonadiabatic transitions in "éformulating the general semiclassical Liouville method in
terms of trajectories to include an explicit semiclassical €'ms of a single trajectory ensemblelere, oneensemble of
ensemble-based treatmentofthe off-diagonal electronic cohérénce.  rajectories supports the evolutionaif of the generalized phase
Similar approaches have been pursued by Kapral, Ciccotti, andSPace distributiong;(q, p, t). A single reference Hamiltonian
co-workerst~11 Schofield and co-worker®-14 Ando and co- is chosen on the basis of physical grounds; for electronic
workers1516 Stock and co-worker¥, and others. relaxation of an initially excited state, the upper surface
In our previous publications, we describe the nonadiabatic HamiltonianHi, is the natural choice, for instance. Classical
semiclassical Liouville formalism and present numerical imple- trajectories evolving on this surface then represent the dynamics

mentations of the general approach in the context of a modified Of the population of the upper statei(q, p, ) and alsothe
classical molecular dynamics simulation in both diaBafc® electronic coherence:»(q, p, t) and ground state population

and adiabatitrepresentations. In addition, we apply the method £22@ P, 1). The error made in the classical motion of the
to the simulation of quantum electronic coherence and the trajectories for these latter distributions is compensated

process of environmental decoheref€@8 The method has ~ fOr by incorporating the difference between the correct and
proven to be quite accurate for the model problems consideredréference Liouville propagators into the calculation of the
so far, providing not only nearly quantitative agreement between coefficients of the individual trajectories. As illustrated in ref
the observable electronic population transfer but also a faithful 7» this approach can give nearly exact results for a number of
representation of the evolving states of the system, including M0del problems and cases describing ultrafast electronic
the intrinsically quantum mechanical coherence terms. relaxathn dynam|ps. Although the single ensemble method is
A full numerical implementation of the semiclassical Liouville MUch simpler to implement than the full multiple ensemble
method for nonadiabatic dynamicsis computationally interisit& approach, the interaction of trajectories within the ensemble
and care must be taken in the selection and propagation of theléads to numerical challenges in multidimensional systems,

trajectory ensembles. These complications are due to the useVhere the large number of trajectories required to sample the
evolving densities combined with the linear algebra problem

T Part of the special issue “Robert E. Wyatt Festschrift’. associated with trajectory interactions leads to high computa-
* Corresponding author. E-mail: cmartens@uci.edu. tional expense.
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In this paper, we describe the extension of the semiclassicalWritten out explicitly in terms of components df, eq 4
Liouville method to problems in multiple dimensions. We becomes
introduce anndependent trajectory approximatipwhere the .
computationally expensive terms in the equations of motion that ] dPij Z . o
capture the nonlocality of nuclear quantum dynamics are 'hE: ZHikpkj_pikaj (6)
neglected. The resulting method, although quantum mechanical k=
in nature, resembles conventional classical molecular dynamics
and ensemble averaging in practical implementation. As we
describe below, this approximation is often (although not
always) a good one, leading to an efficient and easily imple-
mented method for modeling molecular dynamics on multiple
electronic states in many dimensions. _ a power series expansionfin To lowest order, the product of
The organization of _the rest of t_hls paper is as follows: In ¢\ operatorsh and B becomes
section I, we briefly review the semiclassical Liouville approach
to molecular dynamics on multiple electronic states. We AB=AB+ih{A, B} +O(h2) @)
summarize the multiple ensemble methodology employed in our
previous work and describe the current single ensemble where A(g, p) and B(g, p) are the corresponding functions
independent trajectory formulation. In section Ill, we apply the defined on phase spacg, () and
method to model single and multidimensional problems and

whereH, = oy = V.

The classical limit of the multistate quantum Liouville
equation of motion can be found by applying the Wigner
Moyal formalism?2-25 which gives a classical phase space
representation of the algebra of quantum operators in terms of

compare the results with exact quantum wave packet calcula- AB =Y A 9B 9B 9A
tions. Finally, a summary is given in section IV. 4 8qn ap, aq, op,
II. Method

is the Poisson bracké?.A systematic power series fncan be

We consider the problem of nonadiabatic molecular dynamics defined rigorously for general operators dependingjpand
on two coupled electronic surfaces. The time-dependent wavep, using the Wigner-Moyal formalism. This classical limit results
function describing the coupled electronic-nuclear dynamics of in a set of coupled partial differential equations for the

a two electronic staté nuclear degree of freedom system is semiclassical phase space functions corresponding to the matrix

given by elements ofp. These arg 418
Pa(d, t)) o114 2V
W(g,t) = 1 Tu_ » _2v
(CAY) (wz(q, t) @) e 1011 T {V, Repy,} A Im py, 8)
and the Hamiltonian is a 2 2 matrix of operators: P22 A 2V
. Wz& 2202 T {V, Repy} +7|m P12 9
N H, Vv
H= A 2
v 22 0p1p
whereq = (qu, gy, ..., o). The diagonal elementgjj consist of at 1 iV
the kinetic plus single surface potential energy operators, (Vo iw)pip +5{Viprp+ P2t + g(Pn — p2) (10)
s P . o
o= o +U(a) 3) where./, f = {H,, f} defines the classical Liouville operator

L4 2m, -/, in terms of the Poisson bracket with the corresponding
Hamiltonian. The average Hamiltonidty = (Hi1 + Hazp)/2

fori = 1, 2. We take the off-diagonal elemev(q) to be a real appears in the equa@i(_)n of mot_ion f(_)r the electronic coherence
function of the coordinates; this corresponds to a diabatic 14, P, ©). In addition, an imaginary phase factefio
representation of the electronic problé. contributes a nonclassical component to the evolutiop.af

Our semiclassical approach to nonadiabatic molecular dyna-Where @ = (Hi — Hx)/fi is the difference potential di-
mics is based on the quantum Liouville equation for the density Vided by#. The equation of motion fop,; can be obtained
operatorp(t).2%21 The Liouville representation allows a direct from €q 10 by complex conjugation. For nonzero electronic
analogy to be made between classical and quantum mechanic§0UPIingV, sink and source terms appear in the equations that
and permits a description of manifestly quantum mechanical couple the evolving generalized phase space distributions to

quantities and processes in terms of classical functions in phaseach other.

space and their approximations by trajectory ensembles. In the full numerical method, the functiopgy, pzz, andp:2
The state of the system is described by the density operator@re each represented by distinct ensembles of trajectories. Each
A(t), which obeys the quantum Liouville equatf8it trajectory is weighted by a time-dependent coefficient; for the
coherence, these coefficients are, in general, complex numbers.
. dp(t) N In particular,
ih=—==[H, p(t)] (4)
dt 1N
— (1) . ()
For the two state problem considered here, the density operator Pl ) = N Z g (1) p(I' — I77(V) (11)
is itself a 2x 2 matrix, =
5.(0) Do) wherel’ = (q, p). Here,N is the number of trajectories in the
p(t) = (f)ll 812 ) (5) ensemble (taken here to be the same for eaphwhere
P21(t) P2o(t) u = 11, 22, 12. The trajectory ensembles are smoothed by a
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Gaussian functio(I'):

f

¢(F - I_‘o) = ¢n(rn - I_‘n,o) (12)
where
¢n(rn - 1—‘n,o) =
1 (O = Gho) (O Pno)’
— — — : 13
Znoq,nop,n ex;{ 20q1n2 Zopm2 (13)

The widthsog, and o,y are determined by numerical consid-
erations. To use eq 11 as the basis for propagation of the couple
phase space functions, equations of motion for the coefficients
a]-(’"(t) are needed. These are then combined with conventional
Hamiltonian dynamics for the phase space variaﬁ]@(;t) =(
qj("), pj(/‘)). In the full multiple ensemble implementation, each
ensemble evolves under its own Hamiltontdn

We derive equations of motion for the trajectories and their
coefficients by considering the short time limit of the integrated
form of the inhomogeneous coupled linear partial differential
equations given in eqs-8L0. As shown in our previous wofk?
the result is a set of linear algebraic equations relating the time
t andt + At coefficients:

a™t + At) = a™) +
At[[sm)]*lD(lO)v'(O) Rea®(t) — %[smrls‘m)v(‘)) Im a<12>(t)]
(14)

a®(t + At) = a®(t) +
At[[s(”)]‘lD(Z")\/'(O) Rea®(t) + ?21[s<22>]‘15<2°>\/(°) Im a(lz)(t)]
(15)

a"(t + At) = Qa*?(t) +
At[%[s(oo)]le(Ol)V,(l) + %[5(00)]715(01)\/(1)]q)(l)a(n)(t) "
At[%[s(oo)]—lD(OZ)V,(Z) _ %[5(00)] ~1f02)\/(2) <I>(2)a(22)(t) (16)
(We employ the notatiop = 12 = 0 in these expressions for

simplicity.) The overlap and derivative matric8¢) and D¢
are defined at timé as follows:

S{w) _ ff¢(r . rl(ﬂ))d)(r _ Fj(v)) d2fr (17)

i

[D

JJor =T s -1 E'T - (18)

These matrix elements can be evaluated analytiéafylhe
diagonal matrices in eqs 346 are given by

v =v(rts, (19)
V(W)
)y — |
V'il= og, i (20)
q)i(ju) — e—ia)(l“l(u))Atéij (21)

During each time step, the coupled set of linear equations, eqs

14-16, are first solved for the updated coefficients and then
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the trajectoried”((t) are integrated forward to+ At using
Hamilton’s equations.

The numerical method described above can give accurate
results for model problems of molecular dynamics with elec-
tronic transitiong~> The approach can describe both electronic
relaxation processes and coherent wave packet interferometry
with a nearly quantitative level of accuracy. In practice, however,
the method requires care to apply to a given problem and is
difficult to incorporate into a general “black box” approach that
can be employed without significant preliminary study of the
problem and its dynamics.

The origin of these complications is the use of multiple trajec-
tory ensembles to support the elementg.dtach set of trajec-

dories I“j(")(t) must be followed in phase space. This is not a

difficulty for the trajectory propagation itself, but it creates
significant technical problems for the equations of motion de-
scribing the coefficientsa]-(")(t). In particular, the structure of
the matricess® andD® as a function of the trajectory indices
i andj become complicated and unpredictable. Significant book-
keeping is thus required if approximations to the matrix structure
are to be made to simplify and accelerate the linear algebraic
computations. More seriously, divergence of the ensembles rela-
tive to one another in phase space can create situations where,
e.g., theuth ensemble fails to provide an adequate representa-
tion of p, where the inhomogeneous term dependingo# 1
is important becaus&"“(t) and I(t) no longer overlap in
configuration and momentum space. Without significant effort
being expended in generating new trajectories (and retiring irre-
levant ones), the linear algebra problem for the coefficient evo-
lution becomes ill-defined, resulting in numerical instabilities.
To circumvent the problem associated with a multiple
trajectory ensemble representation of the density matrix ele-
ments, we have reformulated the semiclassical Liouville method
in terms of asinglereference ensembl(%(”sf)(t).7 In particular,
all three distribution functions are supported by a single
trajectory ensemble, evolving under a reference Hamiltonian
Hrer. For ultrafast relaxation of an initially excited electronic
state (defined here as state 1), the dominant dynamical process
is the evolution of the initial density;;, and thus the natural
choice for the reference HamiltonianHgs = H11. The ensemble
of trajectories supports the dynamicsmp andp1,, as well as
p11. Incorporating a single reference ensemble in eq 11 gives
the densities as

1N
%&0=N;¥%ww—w%m (22)

Propagating these different generalized distributions under the
same Hamiltonian introduces errors in the evolution. To
compensate for the error made in using the “wrong” trajectories
in eq 22, a correction factor is incorporated into equations of
motion for the coeﬁicientaj(“)gt). We write the propagators for
the electronic states, exp(,), in terms of the reference
propagator exp(/ ). Theuth HamiltonianH, is expressed in
terms of the reference Hamiltoniartd,e; and a correction

HamiltonianAH,:
HM =Ht AHﬂ (23)

V\ahereAH,u = H, — Hrer. Then, defining the Liouville operator

fAH,, = {AH,, *} and invoking a short time approximation, we

have

eAtr/it ~ eAtfrefeAl/lHu ~ eAtr»/?ref(l + At»ﬁAHﬂ) (24)
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The expressions for the short-time propagaigthen become
ool t+ At = € oy (1 ) + (b 1) +

L an (T D)AL + O(AL)] (25)

Pl t+ At) = eAt/‘/réf[Pzz(rv t) + (T, 1) +
JZszpzz(r: B)At + O(At?)] (26)

piAl, t+ AL) = eAt"/?TEfe_iw(F)m[Plz(r: t) + (by(T', t) +
L an AT, D)AL + O(ALY)] (27)
A modified set of linear algebraic equations is obtaifed:
a™(t+ At) = (14 AtS'DA)AM(t) +
At[S‘lDV' Rea™t) — %v Im a(lz)(t)] (28)

%2t + At = (1 + AtS'DADA?() +
At’s*lDV' Rea*?(t) + %v Im a‘“)(t)] (29)
a2t + At) = (1 + AtST'DA)Pa (1) +

2ats DV @la () + a?2y] + pAtvalay — a®(0)
(30)
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each individual trajectory as

i+ a0 =™ — ) Im Y  (35)

A2+ 4 =2 + Ty m ¥ (39)

at+ AY) =
& O(aft2( + VA ~ a™(0]) (37)

wherei =1, 2, ...\N, andT is the phase space point of trajectory

i at timet. This approximation forms the foundation of the
method presented in this paper. It will be seen that for the
problems for which this approximation works, the results show
very good agreement when compared against exact calculations.
Moreover, this formulation provides a significant advantage over
coupled trajectory implementations of the semiclassical Liouville
formulation of quantum dynamics: The computational cost
required in the implementation of eqgs 35, 36, and 37 is
comparable to conventional classical molecular dynamics and
ensemble averaging.

In the next section the independent trajectory approach will
be tested on the model problems considered in our previous
work to compare its accuracy and asses its limitations. The
method is then extended to the reaction dynamics in a two-
dimensional model of collinear reaction dynamics.

The overlap, derivative, potential, potential derivative, and phase |||. Numerical Tests of Method

matrices now no longer are given superscripts indicating the

ensemble, as for all casgs= v = ref.

As shown in ref 7, results obtained using the single ensemble
Liouville formulation can be in close agreement with exact
guantum results for model one-dimensional systems. Complica-
tions remain, however, for multidimensional problems: The
number of trajectories required to represent the evolving
densities accurately scale exponentially with the number of

degrees of freedorh Straightforward methods for solving the

linear algebra problem associated with the interactions between
trajectories quickly becomes computationally unfeasible, and

additional approximations are required.

The main numerical complication of the interacting trajectory-
based method is the linear algebra associated with the overla

matrix S. For the localized smoothing functiogél’), this matrix

is nonzero mainly along the diagonal. The other relevant object

for coupling of trajectories is the derivative matiix which

has zeros on the diagonal. These two characteristics suggest,

introducing the followingndependent trajectorgpproximation:
s'b=0 (31)

With this approximation, the equations of motion for the
coefficients simplify to

a5t + A = ay - 2y imat?y  (32)
@2) — 4@ 2At 12)
a®(t+ Ay =a*) +Z=Vimaty)  (33)
a2t + At) = bald(t) + Xvaratiiy — a®y)]
h (34)

p

A. Coupled Bound—Repulsive SystemAs a first test of
the accuracy of the single ensemble independent trajectory
approach, we apply the method to a model of coupled bound
and repulsive motion on a pair of one-dimensional potentials.
This system was treated in our previous publications using the
full multiple ensemble methdd*18 and the single ensemble
implemention’ Nearly quantitative agreement with quantum
wave packet results was obtained in both of these previous
studies.

The system represents the coupled electronic-nuclear dynam-
ics of a diatomic molecule with (reduced) mass= 10 000 au
prepared initially as a minimum uncertainty wave packet on
the upper (repulsive) surface. The initially populated state is
represented by an exponential function,

Uy(a) =Ae (a—q,) — B

hich is coupled by off-diagonal terms in the diabatic two-
state Hamiltonian to a bound Morse potential, given by

(38)

U,(q) = D(e*%(Q*QZ) _ Ze*ﬂ(CI*CIz)) (39)
These curves exhibit a single crossing in the dynamically
relevant region, ayj = gc. The off-diagonal coupling term is
represented by a Gaussian centered at the crossing point,
V(@) = Voe @ %" (40)

Numerical values of the parameters for this system are given
in Table 1.

The initially populated repulsive state is employed to define
the reference Hamiltonidd,ef, and so trajectories are propagated
on the Ui(g) potential. An initial ensemble oN = 169

Because now there are no cross terms, we can drop the matrixXrajectories is generated in phase space by sampling the two-
notation and write the iteration algorithm for the weights of dimensional Gaussian Wigner distribution of the initial mini-
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TABLE 1: Numerical Values of Parameters for the

Roman

and Martens

T T
Bound—Repulsive System, in Atomic Units
A 2.2782x 10°2 0.9 I
B 2.2782x 1072
o 2.0 h_'.‘}.8- i &
Ch 55 =9
D 1.8225x 102 0.7+ e} Couplcd ; =
B 1.0 « Independent e i
o2 5.8 0.6F |— Quantum o F 4
c 4.0 2
6.15315 z a 1 : L "

s 1% 10¢ 0% 5 6 7
1) 4 x 1073 qo"{a-u-
Vo 1.2x 1073

Figure 1. Exact and semiclassical asymptotic population on the

. . _ repulsive surface as a function of the initial wave packet position for
mum uncertainty wave packet localized g4, (o = 0) on the the coupled boundrepulsive model. Shown are wave packet propaga-

upper surface. This initial wave packet is parametrized by the (o calculations (black), coupled trajectory results (red diamonds), and
harmonic frequency» given in Table 1, giving widths\q = the calculations performed with the independent trajectory method (blue
VAl2mw and A, = vmwhi2, so thatAqA, = h/2. The dots).
repulsive wall of the potential accelerates the quantum state (and

the trajectories in its ensemble representation) in the direction 1 ' '
of increasingqg, leading to electronic population transfer near 0.8F .
the crossing poing = Q.

The width parameters characterizing the smoothing function 0.6 & Coupled .
¢(q, p) are obtained from the initial wave packet widths by the v * Independent
scalingoq = 2A¢/N ando, = 2A/N. These values are found to 0.4r = puaiiver |
yield numerically stable and accurate results in practice. The
exact quantum results were obtained by the method of KoZloff. 0.2r F; i

As shown in Figure 1, the independent trajectory results are 0 : .
very close to the coupled single trajectory results of ref 7. For 20 Bhan 40 60

small initial displacements),, the initial wave packet has a Figure 2. Final population for the single crossing model. The
relatively high kinetic energy at the crossing point. For such asymptotic population is studied for different initial momenta .of the

conditions, the se_mlclassmal results agree very well with exa_lct wave packet. Shown are wave packet propagation calculations (black),

quantum calculations. Only when the initial wave packet is coupled trajectory results (red diamonds), and the calculations performed

situated near the crossing point initially do the results disagree. with the independent trajectory method (blue dots).

These results indicate that the independent trajectory approxima-

tion does not introduce errors beyond those of the semiclassicalabove. The wave packet's initial Wigner function is again

method and its single ensemble formulation for this system. Ssampled withN = 169 trajectories. The exact results are
B. Tully’s Single Crossing Model.As a further test of the ~ Obtained using by solving the time-dependent Sdimger

independent ensemble method, we consider a model proposegquation using the method of KosIaf.

by Tully.28 This model, which consists of two potentials witha ~ The results presented in Figure 2 show nearly quantitative

single crossing, has become a benchmark problem for nona-agreement between the quantum and semiclassical Liouville

diabatic dynamical simulation methods. We define the two results. The independent trajectory method gives results that
diabatic surfaces to be are esentially indistinguishable from the interacting ensemble

approach.

U,(g) = Al — expB9)] g<o0 (41) C. Tully’s Dual Crossing Model. We also consider the dual
19 —A[1 — exp(-Bg)] q>0 crossing model of Tully® This system exhibits two crossings,
which allows for interference effects in the final state popula-
and tions due to crossing and recrossing between the surfaces. The
U,(g) = —U,(a) (42) two potentials characterizing the dual crossing model are
given by
The off-diagonal coupling is given by
U,(g) = ~Aexp(-Bqf) + E, (44)
V(a) = C exp(~Dc) “3)
These potentials exhibit a crossingget 0. Surface 1 defines
Hrer. The numerical parameters employed Are= 0.01,B = U,(q) =0 (45)

1.6,C = 0.005, andD = 1.0. The mass isn = 2000 au. We

compute the final energy-dependent electronic transition prob- and the electronic coupling is taken to be
abilities P; and P,, defined as the asymptotic populations of
states 1 and 2, respectively. We show the results in Figure 2
and consider a range of initial average energies, giveR by
h2k?/2m, wherek is the wave vector of the initial wave packet.
The initial coordinate value chosendgg = —6.0 au, well to = 0.015,D = 0.06, andm = 2000 au, the same as considered
the left of the crossing point at= 0, and the mean momentum by Tully?® and in our previous work on the single ensemble
is po = hk. The position and momentum widths are chosen in approacH.The reference Hamiltonia,es is defined by theJ;-

the same manner as for the bounr@pulsive system described (q) potential. The minimum uncertainty wave packet width is

V(q) = C exp(-=Dq) (46)

The numerical parameters ake= 0.1,B = 0.28,E; = 0.05,C



Semiclassical Liouville Method J. Phys. Chem. A, Vol. 111, No. 41, 20010261

1

0.8
=
_0.6r 5
[ S
0.4t : =
K} ’-'. <& Coupled
0.2f ae » Independent|
— Quantum 1 20
04 : '2 : R/au.
In(E) / a.u. Figure 4. Potential energy landscape for the triatomic reaction model.

. . . . L The cut in the two-dimensional surface has been made=at..
Figure 3. Final population for the dual crossing model. In this figure

lt(he asymptotic ;?orp])ulation is D'Etteg ﬁgainst the Iogarithkm ofthe initial BC, As mentioned above, the kinetic energy operator is diagonal
inetic energy of the wave packet. Shown are wave packet propagation; ; ; e i
results (black), coupled trajectory (red diamonds), and the calculations in this representation and is given by

performed with the independent trajectory method (blue dots). 2 2
pr pR
T= + (49)
) . . . 2Mge  2Mp e
TABLE 2: Parameters Used in the Collinear Nonreactive
Triatomic Reaction (All Values in Atomic Units) and the intersurface coupling is
De ﬁ e Drep Vc m
V=V (50)
0.038647 0.458038 5.0494 0.02 0.00136 12652.7 ¢

and the parameteidgc andMa gc are the reduced masses for

the same as for the calculations described above, and the meathe B—C and A-BC motions. The three atoms are taken to be
position and momentum agg = —8.0 au andy, = hk, where identical with a mass of lithium, so the expressions for the
E = h%?2m. The results are shown in Figure 3. Very good reduced masses simplify to
agreement is observed at high energies. However, stron
dgviations between the indepgndent gnd coupled trajectorg Mgc = m/2 and  Mygc =2m3 (1)
methods are seen at lower energies, and here the agreemenlthe values of the different parameters used in the simulation
between the independent trajectory results and exact quantum : : " S
calculations is worse than those for the coupled trajectory are s.umm.arlzed in Table 2, Wh‘?re aII. the quantities are in in

. atomic units. A cut of the two-dimensional diabatic potential
approach. At the low energies, quantum effects are more

important, and the nonlocal interference between amplitudes onﬁﬁiﬁcipfa;feihggv?hgn c':ég:jerf ;; tﬁgl?n?tlijatllvz\?asvemagilzae}tr ezl;llon
the two electronic surfaces are not well-captured by the ther coordinate, whereas the initial state center alg' taken ’
approximations underlying the current method. ! g

D. Multidimensional Models. We now extend the indepen- at an asympiofic value witR = 16 au. The initial population

dent trajectory formulation to the study a problem that has more IS on surface 1; therefore, to get to the reactive region, some

than one spatial dimension. The model is two-dimensional and mitigl kjnetic energy ha§ to be give.n o Fhe wave packet at thg

represents a collinear collision and reaction between an atornbegmnmg of the simulation. The adiabatic representation of this

and a diatomic molecule. of the form A BC — AB -+ C. We two-dimensional system has two potential wells on the ground

treat a system employed’by Ben-Nun and Neetin the étudy state, which describes a reactive atom exchange reaction of the
Nreah 30 . .

of their multiple spawning method for multidimensional nona- LE.PS fqrm, with an energy baf”er separating the ngls. .The

diabatic problem@ where values for the reaction probability adiabatic representation is obtained from the diagonalization of

have been given for quantum calculations and for simulations Egebsgm'zlt%n:g;;%rg\];gsgizrs’:m;le t?ggire?elg:é;;%u?od
done with the multiple spawning method. In this two- overco?ne tﬁe barrier i'n the adiabatic re resentaﬂi):)n it will be
dimensional diabatic model, each of the two diabatic potentials . . P L

. . . L the energetic reference in the measure of the initial kinetic
describes a collinear nonreactive collision between an atom andener of the wave packet:
a diatomic molecule. Chemical reaction corresponds to transition ay P )
between these two diabatic states. The interstate coupling has T.=T—-B (52)

. . ex h

been set to a constant throughout the simulation. The calcula-
tions are done in Jacobi coordinatégjiving a diagonal kinetic  where the excess kinetic energy is calculated from the initial
energy operator for each electronic state. The two potential relative kinetic energy of the atom with respect to the center of

surfaces are given by mass of the diatomic molecule.
) The semiclassical Liouville reaction probability is plotted
Uy(r, R) = Dg(1 — exp(=4(r — rg)))” + against the excess kinetic energy in Figure 5 and compared with
Drep expBA(R—r/2—ry) (47) the results of exact quantum calculatiGA€ur semiclassical
results show a very good correspondence with quantum calcula-

and tions, with the best agreement at low and high energies.
U,(r, R) = D (1 — exp(—A(R — rl2 — r))* + IV. Summary

Diep €XPEA(r — 1)) (48) In this paper, we have presented an independent trajectory

implementation of semiclassical Liouville method for simulating
The Jacobi coordinaterepresents the distance between atoms quantum processes using classical trajectories. The method is
BC, andRis the distance from atom A to the center of mass of based on employing one ensemble of trajectories to represent
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